1	
2	
3	
4	Life Cycle Assessment (LCA) Guidelines for
5	Greenhouse Gas Emissions accounting in Carbon
6	Removal and Recycling (CR2) Technologies
7	
8	
9	
10	
11	
12	
13	Edition 2.5 2024
14	
15	Life Cycle Assessment Society of Japan
16	

17	Table	of	Contents

18	1. Intro	oduction1
19	1.1	Background of formulation of guidelines1
20	1.2	Purpose and scope of the guidelines1
21	1.3	Relationships with existing standards/guidelines1
22	1.4	Utilization of guidelines
23	2. Def	inition of Carbon Removal and Recycling Technologies (CR2 technologies)2
24	3. Met	hods of calculating GHG emissions by CR2 technologies
25	3.1	Definition of goal
26	3.2	Functional unit
27	3.3	Scope of the assessment
28	3.4	GHG to be assessed and global warming potential4
29	3.5	Calculation methods
30 31	3.5. side	1 The amount of GHG generated from technologies using fossil fuel (first term on the right of Formula (1))
32	3.5.	
33		right side of Formula (1))
34	3.5.	3 The amount of GHG stored/sequestered due to the introduction of CR2 technologies
35	(thi	rd term on the right side of Formula (1))
36	3.6	Determination of cost of CR2 technologies
37	3.7	Data collection and data quality
38	3.8	Sensitivity analysis and uncertainty analysis
39	4. Avo	ided GHG emissions by CR2 technologies7
40	4.1	Definition of avoided GHG emissions and the goal7
40 41	4.1 4.2	Definition of avoided GHG emissions and the goal
		Ŭ
41	4.2 4.3	Determination of avoided GHG emissions7
41 42	4.2 4.3 5. Rep	Determination of avoided GHG emissions

46	Appendix Examples for Accounting of GHG Emissions and Avoided Emissions in CR2 Technology
47	systems
48	Appendix 1. GHG emissions and avoided emissions in a power generation CCS system12
49	Appendix 2. GHG emissions and avoided emissions in CCU system that uses raw fossil fuel12
50	Appendix 3. GHG emission from DAC + CCU system (removal if the value is negative)13
51	Appendix 4 GHG emission from DAC + CCS system (or removal if the value is negative)13
52	Appendix 5. GHG emission (or removal if the value is negative) and avoided emissions in mixed
53	combustion BECCS (fossil: biomass = 1:2) system14
54	Appendix 6. GHG emission accounting in biochar (or removal if the value is negative)14
55	

57 1. Introduction

58 1.1 Background of formulation of guidelines 59 In the Paris Agreement adopted in 2015, the long-term goal was set of keeping the increase in the global average temperature to well below 2°C above pre-industrial levels. However, reports from 60 IPCC and other documents suggest that if the current concentration status of greenhouse gases (GHG) 61 in the atmosphere continues, it will be difficult to achieve the above long-term goal. To tackle this 62 issue, the development of technologies for capturing and storing CO₂ from the atmosphere (negative 63 64 emission technologies; NETs, or carbon dioxide removal; CDR methods), as well as technologies for 65 effectively using CO₂ captured from exhaust gas (carbon recycling) and storing it (Carbon Capture, Utilization and Storage; CCUS) is underway in recent years. 66 67 However, there are many unclear points in their overall effectiveness because these technologies consume energy and resources and emit CO₂ and other GHG in processes including carbon capture 68

and sequestration or storage. Furthermore, the influence of the storage duration and by-products, and

their side effects on nature are highly uncertain. For these reasons, quantitative assessments of impacts

of NETs and CCUS technologies using life cycle assessment (LCA) is encouraged.

72 The NETs Research Project is a working group in the Life Cycle Assessment Society of Japan to 73 collect and systematically organize cases of existing LCA research on NETs and CCUS in order to 74 discuss precautions that should be considered when setting assumptions and other factors for 75 appropriate LCA practice. In addition, we recognized that not only assessment of NETs, but also CCUS 76 under which technologies are shared with NETs, is useful in the establishment of a future industry map 77 of NETs. In the project; therefore, we have defined a term, Carbon Removal and Recycling 78 Technologies (CR2 technologies), which collectively refer NETs, CCUS, and other technologies that 79 share fundamental technologies with NETs, and set the entire CR2 technologies as the scope of our 80 project.

81 This document provides guidance on how to quantitively account the amount of greenhouse gas 82 emission in each CR2 technology, which have been discussed in our project.

- 83
- 84

1.2 Purpose and scope of the guidelines

The guidelines provide the methods to account the amount of the GHG emission and removal through introduction of CR2 technologies in the span of the whole life cycle.

However, if emissions of remarkable substances other than GHG and/or large-scale of resource
consumption are expected, remarks on them should be made.

89

90 1.3 Relationships with existing standards/guidelines

91 This document was prepared with reference to the following international standards.

92	• ISO 14040: 2006 Environmental management — Life Cycle Assessment — Principles and
93	framework
94	· ISO 14044:2006 Environmental management — Life Cycle Assessment — Requirements and
95	guidelines
96	The evaluation methodology in the document is organized in align with the following guidelines
97	and others.
98	• The Institute of Life Cycle Assessment, Japan: Guidelines for Contributed Amount in GHG
99	Reduction (provisional translation), https://www.ilcaj.org/lcahp/doc/guideline20150224.pdf
100	· Ministry of Economy, Trade and Industry: Guidelines for Quantification of Contributed Amount
101	in GHG Reduction (provisional translation),
102	https://www.meti.go.jp/press/2017/03/20180330002/20180330002-1.pdf
103	IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories
104	· IPCC: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories
105	• Müller, L. J. et al. 2020: A guideline for life cycle assessment of carbon capture and utilization.
106	Frontiers in Energy Research 8: 15.
107	• For matters not listed in these guidelines, refer to the above standards and guidelines.
108	
109	1.4 Utilization of guidelines
110	These guidelines assume that researchers and development practitioners concerning CR2
111	technologies calculate the amount of GHG emission and removal due to CR2 technologies and use the
112	results inside the organization as well as for communication with outside organizations through
113	academic presentations and descriptions in the CSR report and other documents.
114	These guidelines also assume to be used by parties including the national government autonomous

These guidelines also assume to be used by parties including the national government, autonomous bodies, and industrial groups as a guide for implementations of measures to reduce the amount of GHG emission through CR2 technologies.

117 2. Definition of Carbon Removal and Recycling Technologies (CR2 technologies)

In this document, CR2 technologies are defined as an integration of "NETs" and "systems in which 118 119 technologies that can emit GHG through the use of fossil fuel and CCUS technologies are combined." 120 Technologies that can emit GHG through the use of fossil fuel refer to technologies that emit GHG 121 not only due to the use of fossil fuel, but also from industrial processes themselves. NETs are defined 122 as "technologies that capture GHG from the atmosphere, and store and sequester it" with reference to 123 the broad definition "intentional human efforts to remove CO₂ emissions from the atmosphere" by 124 Minx et al. (2018). 125 In this document, the amount of GHG emission to the atmosphere through CR2 technologies (or

amount of GHG removed from the atmosphere) is determined as follows. A negative obtained value

127	means a net removal of GHG from the atmosphere.
128	
129	(GHG emission amount balanced by CR2 technologies)
130	=(Amount of GHG generated by using raw materials and fossil fuel)
131	+(Amount of GHG emission due to introduction of CR2 technologies)
132	-(Amount of GHG stored/sequestered due to introduction of CR2 technologies)
133	••••••Formula (1)
134	
135	In Formula (1), when the source of the GHG captured by CR2 technologies is not from technologies
136	using raw material and fossil fuel (when GHG captured by the NETs do not include GHG originated
137	from technologies using fossil fuel), the first term on the right side is omitted, but the second and third
138	terms are included.
139	Details of the first, second, and third terms on the right side in Formula (1) are shown in 3.5.1, 3.5.2,
140	and 3.5.3, respectively.
141	
142	Note 1: Examples of the calculation of GHG emission amount balanced by various CR2
143	technologies are shown Appendix.
144	Note 2: The GHG in the third term of the right side in Formula (1) does not include naturally
145	occurring GHG stored/sequestered from natural CO ₂ dome, as often seen in current CO ₂ EOR.
146	3. Methods of calculating GHG emissions by CR2 technologies
147	3.1 Definition of goal
148	[Requirement]
149	• The product or system/technology of a study shall be clearly defined, when conducting the LCA.
150	[Recommendation]
151	• The reason for the calculation, party to report to, and reporting means should be clearly declared.
152	
153	3.2 Functional unit
154	[Requirement]
155	• A function and functional unit of the system/technology being studied shall be specified. A
156	functional unit is a quantified function of the system in a certain unit.
157	• The period and geographical coverage for which GHG emission amount is determined shall be
158	identified. For setting the period, the scientific basis for storage and sequestration of GHG by
159	each CR2 technology shall be presented.
160	
161	Note: Example of functional unit

162	Biochar: biochar mass of 1 kg
163	BECCS (Bioenergy with CCS): power generation of 1 kWh (power transmission end)
164	Afforestation: afforestation area of 1 ha
165	
166	3.3 Scope of the assessment
167	[Requirement]
168	• Processes in an assessment (system boundary) shall be identified.
169	• In principle, all the energies, raw materials, and wastes to be used/disposed in processes shall be
170	included in the introduction and emission of (input to and output from) the system border. The
171	capital goods that constitute processes shall also be included in the system boundary.
172	\cdot When part of the processes inside the system boundary is excluded, those processes and the
173	reason for the exclusion shall be clearly stated.
174	
175	3.4 GHG to be assessed and global warming potential
176	[Requirement]
177	· Seven GHG (carbon dioxide (CO ₂), methane (CH ₄), nitrogen monoxide (N ₂ O),
178	hydrofluorocarbon (HFCs), perfluorocarbon (PFCs), sulfur hexafluoride (SF ₆), and nitrogen
179	trifluoride (NF3)) for which an agreement was made in the United Nations Framework
180	Convention on Climate Change shall be subjects for the assessment.
181	\cdot For the global warming potential of GHG, the latest potential in the assessment report and other
182	documents of the Intergovernmental Panel on Climate Change shall be used. Among them, we
183	recommend using the 100-year GWP (Global Warming Potential).
184	[Permitted matters]
185	• Only specific GHG may be assessed only when the reason is clearly presented.
186	
187	3.5 Calculation methods
188	3.5.1 The amount of GHG generated from technologies using fossil fuel (first term on the
189	right side of Formula (1))
190	[Requirement]
191	• When a CR2 technology system in the study captures GHG from technologies that use fossil fuel,
192	the energies, raw materials thrown into the technologies, as well as industrial waste processing
193	and others shall be included. At the same time, the amount of GHG emissions related to the
194	production of the capital goods in the corresponding technologies shall also be included.
195	[Permitted matters]
196	• In principle, GHG generated from the production of capital goods are subject to the assessment,

197 but capital goods that are not attributable to the implementation of the project and whose GHG

198 generated are considered to be much smaller than the GHG generated from the operation of 199 technologies using fossil fuels may be excluded from the calculation. However, a rational 200 explanation of the reason for such exclusion shall be provided. 201 202 3.5.2 The amount of GHG emissions due to introduction of CR2 technologies (second term 203 on the right side of Formula (1)) 204 [Requirement] 205 GHG emissions due to the use of energy and raw materials, waste disposal, and others as a result of introduction of the CR2 technology shall be determined. At the same time, GHG emissions 206 207 associated with the production of capital goods of the technology shall be determined. 208 [Permitted matters] 209 In principle, GHG emissions from the production of capital goods are subject to the assessment, 210 but capital goods that are not attributable to the implementation of the project and whose GHG emissions are considered to be much smaller than the GHG emissions from the operation of 211 212 technologies using fossil fuels may be excluded from the calculation. However, a rational 213 explanation of the reason for such exclusion shall be provided. 214 215 3.5.3 The amount of GHG stored/sequestered due to the introduction of CR2 technologies 216 (third term on the right side of Formula (1)) 217 Storage and sequestration of GHG captured by CR2 technologies include the geological storage of 218 GHG by CCS, sequestration of GHG as a product by CCU, and sequestration of GHG dependent of a 219 natural process. 220 221 Note 1: Sequestration as a product refers to GHG fixed through an artificial process. Such products 222 may include synthetic fuel, concrete structure, and biochar. They also include temporary 223 sequestration by CCU. 224 Note 2: Sequestration dependent of a natural process may include afforestation, cropland soil, blue carbon, and enhanced rock weathering. 225 226 Note 3: As with sequestration of GHG by biochar as a product, there are some cases in which natural 227 processes must be considered, such as the conditions of the application site. 228 229 [Requirement] For geological storage of GHG by CCS, the actual amount of GHG stored shall be determined. 230 231 In this case, the amount obtained by subtracting the amount of GHG leaked out to the atmosphere 232 during the transportation and storage process from the amount of GHG captured shall be stated as 233 the storage/sequestration amount.

 When sequestering GHG as a product through CCU: (1) Amount of GHG contained in products out of the amount captured (2) Amount of GHG obtained by subtracting the amount of GHG unused in products for 	
250 (2) Amount of Offo obtained by subtracting the amount of Offo unused in products in	om
the amount of GHG captured	UIII
237 The amount of GHG sequestered shall be determined by either of the above methods and clear	rlv
stated. The average GHG sequestration duration as a product shall be clearly addressed.	ury
 When conducting assessments technologies involving natural processes, carbon sequestrat sites (carbon pools) shall be defined, and the increase or decrease in the amount of carbon in 	
241 sites (carbon pools) shall be defined, and the increase of decrease in the amount of carbon in 242 pool per time (accumulation or decomposition rate) and the activity data (e.g., the area of	
 storage site) shall be clarified. 	the
243 storage site) share be clarified. 244 [Recommendation]	
 To store/sequester GHG through CCS or a natural process, the amount of leakage of GHG be stored/sequestered should be monitored. 	ıng
• For technologies involving a natural process, major carbon pools should be included as much	ı as
248 possible.	
249 [Permitted matters]	
250 • If monitoring of the amount of GHG leakage during storage/sequestration is difficult, an estim	ate
251 value may be used. For example, leakage due to decomposition during carbon sequestration	by
biochar may be determined using the percentage of carbon remaining after 100 years.	
253 • When it is difficult to measure accumulation/decomposition rates when assessing G	HG
254 sequestration involving natural processes, the default values specified in the IPCC guidelines r	nay
be used.	
256	
257 3.6 Determination of cost of CR2 technologies	
258 [Recommendation]	
259 • The cost associated with CR2 technologies should be assessed.	
260 • When avoided GHG emissions are evaluated (Chapter 4), the cost per amount of avoided G	HG
261 emission should be appended.	
262	
2633.7 Data collection and data quality	
264 [Requirement]	
265 • The data collection and data quality shall be compliant with ISO 14040:2006 standard, JIS	3 Q
266 14040:2010 and ISO 14044:2006 standards, and JIS Q 14044:2010.	
267	
2683.8 Sensitivity analysis and uncertainty analysis	
269 [Recommendation]	

270	•	In the determination of GHG emission, sensitivity analyses and uncertainty analyses should be
271		conducted to examine the contribution of the preconditions to the results.

272	4. Avoided GHG emissions by CR2 technologies
273	4.1 Definition of avoided GHG emissions and the goal
274	In this document, the avoided GHG emissions by CR2 technologies are defined as "net reduction
275	of GHG emission from the whole system to which CR2 technologies have been introduced.
276	
277	[Requirement]
278	• When evaluating the avoided GHG emissions by CR2 technologies, the CR2 technologies of the
279	subject, and in the case of CCUs, the products used for GHG sequestration shall be clearly
280	identified.
281	
282	[Recommendation]
283	• The goal and reason for assessing the avoided GHG emissions by CR2 technologies as well as
284	the recipients and means of reporting should be clarified.
285	• The point in time, period, and region where the avoided GHG emissions by CR2 technology is
286	analyzed should be specified.
287	
288	4.2 Determination of avoided GHG emissions
289	The amount of avoided GHG emissions by CR2 technologies is determined by the following
290	formula.
291	
292	Avoided GHG emissions by CR2 technologies =
293	Amount of GHG emission from reference system
294	- Amount of GHG emission from CR2 system
295	••••••Formula (2)
296	
297	Note: Examples of calculation of the avoided GHG emissions by CR2 technologies are shown in
298	Appendix.
299	
300	4.3 Reference system
301	[Requirement]
302	• The reference system shall have the same functional unit as the system with CR2 technology
303	in the study.
304	• The reference system shall be assumed to exist in the region and at the time when there is no

305	CR2 system in place.
306	
307	Note 1: For the DACCS (Direct Air Capture and Carbon Storage) system, the zero-emission state
308	before DACCS investment may be set as a reference.
309	
310	• The functional unit and its quantity shall be the same between the first term on the right side of
311	Formula (2) (GHG emission from reference system) and the second term on the right side of
312	Formula (2) (GHG emission from CR2 system).
313	• The scope of assessment must be the same between the first term on the right side of Formula (2)
314	(GHG emission from reference system) and the second term on the right side of Formula (2)
315	(GHG emission from CR2 system).
316	
317	[Recommendation]
318	• When there are multiple functional units in the system, each functional unit should be clearly
319	stated.
320	
321	Note: Example of multiple functional units (CCU)
322	Where CO ₂ is captured in the cement production and methanol is produced using the captured
323	CO ₂ (Appendix 2), there are two functional units: 1 t of cement and 1 t of methanol.
324	
325	[Permitted matters]
326	• When there are multiple functional units and when it is extremely difficult to observe, obtain, and
327	estimate the data, only one functional unit may be assumed.
328	· When there are multiple functional units and the amount of GHG emissions/avoided emissions
329	associated with a certain functional unit is considerably small, the corresponding functional unit
330	may be ignored.
331	· In general, wide scope of the assessment is preferable. However, when the amounts of GHG
332	emissions from both "reference system" and "CR2 system" are the same or when parts of the
333	systems can be regarded as the same, those systems may be excluded from the scope of
334	assessment with clear explanation.
335	
336	Note 1: For methanol production, both methanol produced by an existing process and by CCU may
337	be regarded to go through the same processes after shipment. The scope of assessment; therefore,
338	may include only methanol production process, and exclude the processes after methanol
339	shipment.

341	Note 2: In some cases, the main and co-products of a CR2 technology may contribute to significant
342	GHG emission reductions, either indirectly or through ripple effects (e.g., reduction in chemical
343	fertilizer use through soil plowing of biochar, reduction in GHG emissions from chemical
344	fertilizer production). In such cases, the GHG emission reductions may be specifically and in
345	detail described (and both positive and negative effects accounted for on a net basis) and
346	accounted for as avoided GHG emissions by the CR2 technology.

347 **5. Report**

- 348 [Recommendation]
- When communicating the results of GHG emissions accounting with stakeholders and others, the
 communication method may vary depending on the purpose. The report for third parties should
 include the following requirements
 a. Definition of goal
- b. CR2 technology assessed
- c. Functional units (including storage period and geographical range)
- 355 d. [Impact categories evaluated]
- 356 e. Definition of scope
- 357 f. List of GHG accounted and global warming potential applied
- 358 g. Methodologies of determination of the amount of GHG storage/isolation and the results
- h. Data collection and calculation procedures
- i. Data quality
- 361 j. Interpretation
- 362 k. Critical review
- 363 6. Critical review and verification
- 364 [Recommendation]
- The report should be subject to critical review or verification. However, it is not necessarily
 limited to a third party.

367 7. Glossary

- 368 CCS (carbon dioxide capture and storage): process consisting of the separation of CO₂ from industrial
- 369 and energy related sources, transportation, and injection into a geological formation, resulting in
- its long-term isolation from the atmosphere (ISO/TR27915:2017)
- 371 (Below are auxiliary explanation of CCS by ISO 27917.)
- 372 Note 1 to entry: CCS is often referred to as Carbon Capture and Storage. This terminology is not

encouraged because it is inaccurate: the objective is the capture of carbon dioxide and not the
 capture of carbon. Afforestation is another form of carbon capture that does not precisely describe
 the physical process of removing CO₂ from industrial emission sources.

- Note 2 to entry: The term "sequestration" is also used alternatively to "storage". The term
 "storage" is preferred since "sequestration" is more generic and can also refer to biological
 processes (absorption of carbon by living organisms).
- Note 3 to entry: Long term means the minimum period necessary for geological storage of CO2
 to be considered an effective and environmentally safe climate change mitigation option.
- Note 4 to entry: The term Carbon dioxide Capture, Utilization (or use) and Storage (CCUS) include the concept that isolation from the atmosphere could be associated with a beneficial outcome. CCUS is embodied within the definition of CCS to the extent that long term isolation of CO2 occurs through storage within geological formations. CCU is Carbon Capture and Utilization (or use) without storage within geological formations.

386 Note 5 to entry: CCS should also ensure long term isolation of CO2 from oceans, lakes, potable
387 water supplies and other natural resources.

388

Carbon Dioxide Removal (CDR): Human activity capturing carbon dioxide (CO2) from the
 atmosphere and durably storing it in geological, terrestrial, or ocean reservoirs, or in products. It
 includes enhancement of biological or geochemical CO2 sinks and direct air carbon capture and
 storage (DACCS), but excludes natural CO2 uptake not directly caused by human activities
 (Smith et al. 2024).

394

GHG (greenhouse gas): gaseous constituent of the atmosphere, natural or anthropogenic, that absorbs
and emits radiation at specific wavelengths within the spectrum of infrared radiation emitted by
the Earth's surface, the atmosphere, and clouds (ISO/TR27915:2017)

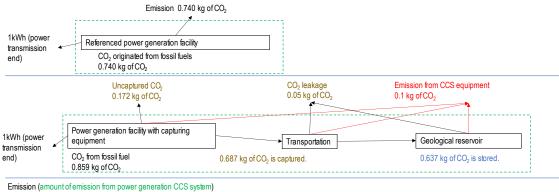
- GHG removal: total mass of GHG removed from the atmosphere over a specified period of time(ISO/TR27915:2017)
- 401

398

- 402 GHG/CO₂ emission reduction: calculated net decrease of GHG emissions between a baseline
 403 scenario and the output assessment target technology (ISO/TR27915:2017)
- 404
- 405 CCU (carbon dioxide capture and utilization): act of capturing carbon dioxide (CO₂) in exhaust gas or 406 the atmosphere and converting it into products.

407

408 Reference documents


409	ISO 14040:2006 Environmental management — Life Cycle Assessment — Principles and
410	framework
411	ISO 14044:2006 Environmental management — Life Cycle Assessment — Requirements and
412	guidelines
413	ISO 27917:2017 Carbon dioxide capture, transportation and geological storage — Vocabulary —
414	Cross-cutting terms
415	ISO/TR27915:2017 Carbon dioxide capture, transportation and geological storage -
416	Quantification and verification
417	Minx, J. C., Lamb, W. F., Callaghan, M. W., Fuss, S., Hilaire, J., Creutzig, F., Amann, R., Beringer,
418	T., de Oliveira Garcia, W., Hartmann, J., Khanna, T., Lenzi, D., Luderer, G., Nemet, G. F.,
419	Rogelj, J., Smith, P., José Luis Vicente-Vicente, Wilcox, J., and Maria del Mar Zamora
420	Dominguez. 2018. Negative emissions - Part 1: Research landscape and synthesis.
421	Environmental Research Letters 13 (063001).
422	Müller, L. J., Kätelhön, A., Bachmann, M., Zimmermann, A., Sternberg, A., Bardow, A. 2020. A
423	guideline for life cycle assessment of carbon capture and utilization. Frontiers in Energy
424	Research 8: 15.
425	Greenhouse Gas Inventory Office of Japan and Ministry of the Environment, Japan (eds.),
426	National Greenhouse Gas Inventory Report of JAPAN 2020, Center for Global Environmental
427	Research, National Institute for Environmental Studies, Japan, 2020.
428	Ministry of Economy, Trade and Industry, 2017. Guidelines for Quantification of Contributed
429	Amount in GHG Reduction
430	https://www.meti.go.jp/press/2017/03/20180330002/20180330002-1.pdf
431	The Institute of Life Cycle Assessment, Japan, 2015. Guidelines for Contributed Amount in GHG
432	Reduction, https://www.ilcaj.org/lcahp/doc/guideline20150224.pdf
433	IPCC, 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the
434	National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K.,
435	Ngara T. and Tanabe K. (eds). Published: IGES, Japan.
436	IPCC, 2019, 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas
437	Inventories, Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize,
438	S., Osako, A., Pyrozhenko, Y., Shermanau, P. and Federici, S. (eds). Published: IPCC,
439	Switzerland.
440	Smith, S. M., Geden, O., Gidden, M. J., Lamb, W. F., Nemet, G. F., Minx, J. C., Buck, H., Burke,
441	J., Cox, E., Edwards, M. R., Fuss, S., Johnstone, I., Müller-Hansen, F., Pongratz, J., Probst,
442	B. S., Roe, S., Schenuit, F., Schulte, I., Vaughan, N. E. (eds.) The State of Carbon Dioxide
443	Removal 2024 - 2nd Edition. DOI 10.17605/OSF.IO/F85QJ (2024)
444	

445 Appendix. Examples for Accounting of GHG Emissions and Avoided Emissions in 446 CR2 Technology systems

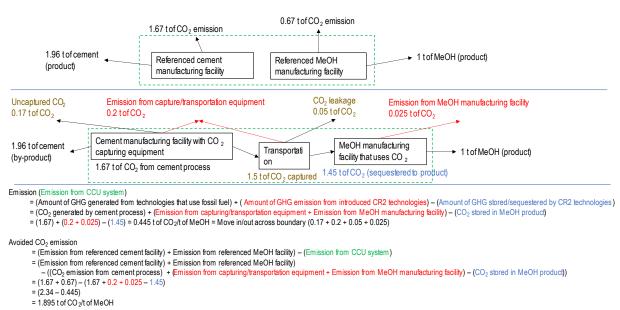
447

448 Appendix 1. GHG emissions and avoided emissions in a power generation CCS system

449

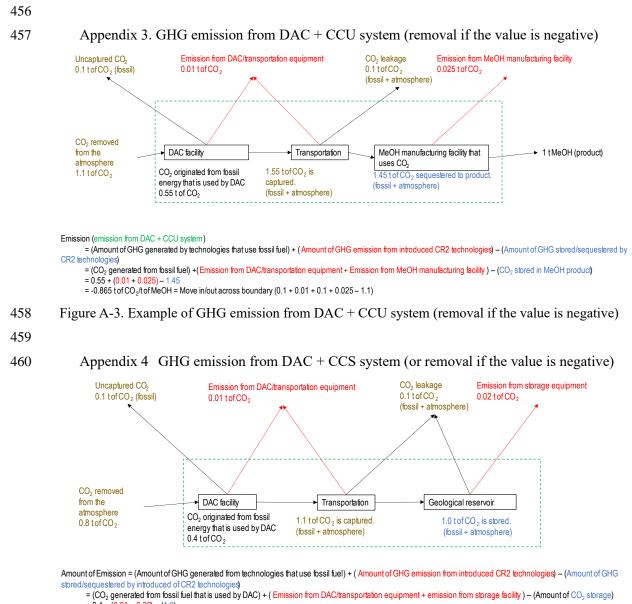
= (Amount of GHG generated from technologies using fossil fuel) + (Amount of GHG emission due to introduction of CR2 technologies) – (Amount of GHG stored/sequestered by CR2 technologies)

= (CO₂ emission from fossil fuel + emission from CCS equipment – amount of CO₂ storage) = 0.859 + 0.1 – 0.637


 $= 0.332 \text{ kg of } CO_2/\text{kWh} = \text{Movement through boundary } (0.172 + 0.05 + 0.1)$

= (Emission from referenced power generation facility) – (Emission from power generation CCS system) = 0.740 - (0.322) = 0.418 kg of CO₂/kWh

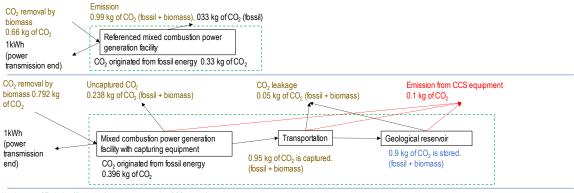
- 450 Figure A-1. Example of GHG emissions and avoided emissions in a power generation CCS system
- 451


452 Appendix 2. GHG emissions and avoided emissions in CCU system that uses raw fossil

453 fuel

- 454 Figure A-2. Example of GHG emissions and avoided emissions in CCU system that uses raw fossil
- 455 fuel (two functional units)

Avoided CO₂ emissions


= 0.4 + (0.01 + 0.02) - (1.0) = -0.57 tof CO₂/tof CO₂ sbred = Move in/out across boundary (0.1 + 0.01 + 0.1 + 0.02- 0.8)

461

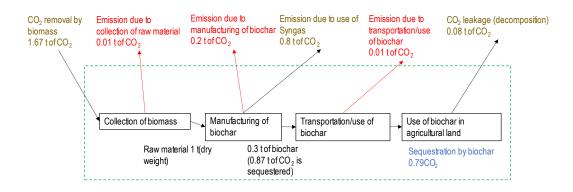
462 Figure A-4. Example of GHG Emission from DAC + CCS system (or removal if the value is

463 negative)

Appendix 5. GHG emission (or removal if the value is negative) and avoided emissions in
 mixed combustion BECCS (fossil: biomass = 1:2) system

Net Amount of Emission (Emission from power generation CCS system)

= (Amount of GHG generated by technologies that use fossil fuel) + (Amount of GHG emission from introduced CR2 technologies) – (Amount of GHG stored/sequestered by CR2 technologies) = (CO2 generated from fossil fuel + emission amount due to use of CCS equipment – Amount of GHG storage) = 0.396 + 0.1 - 0.90


Avoided Emissions = (Emission from referenced mixed combustion facility) – (Emission from mixed combustion power generation facility with CCS system) = 0.33 – (-0.404) = 0.734 kg of CO₂/kWh

467 Figure A-5. Example of GHG emission (or removal if the value is negative) and avoided emissions in

469

470 Appendix 6. GHG emission accounting in biochar (or removal if the value is negative)

471

Amount of Emission (Emissions in biochar)

= (Amount of GHG generated from technologies that use fossil fuel) + (Amount of GHG emission from introduced CR2 technologies) – (Amount of GHG stored/isolated by CR2 technologies)

= 0 + (Emissions in biomass collection, biochar manufacturing, and transportation/use of biocha) – (Amount of CO₂ stored in biochar) = 0 + (0.01 + 0.2 + 0.01) – 0.79

= -0.57 tof CO₂ per 1 tof raw biomass material = Move in/out across boundary (0.01 + 0.2 + 0.01 + 0.8 + 0.08 - 1.67)

472 Figure A-6. Example of GHG emission accounting in biochar (or removal if the value is negative)

^{= -0.404} kg of CO₂/kWh = Movement across boundary (0.238+ 0.05 + 0.1- 0.792)